
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 5010314
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Abstract— The 3-D perception of the low-light underwater
environment has always been a major challenge, which greatly
limits underwater operations. In this article, an underwater
active vision measurement system based on binocular structured
light is designed to achieve high-precision 3-D reconstruction.
First, the fusion technology of binocular camera and laser
addresses underwater optical attenuation and feature sparsity.
Then, in order to avoid the huge inertia caused by the overall
movement of the system, a laser scanner based on the mirror
galvanometer is used to accomplish static scanning of the scene.
Subsequently, considering the influence of multiple media, under-
water refraction models, including the monocular imaging model,
the binocular ranging model, and the binocular polar curve
constraint model, are systematically proposed. What is more,
the conventional checkerboard-based passive visual calibration
method is ineffective for low-light waters. Therefore, a simple cal-
ibration block is designed, and a new multiobjective laser-based
calibration algorithm based on laser geometric constraints is
proposed. Finally, the effectiveness of the system is verified by
analyzing the 3-D reconstruction results of underwater objects.

Index Terms— Binocular structured light, laser scanning, laser-
based calibration, underwater 3-D reconstruction, underwater
active vision.

I. INTRODUCTION

OVER the years, the rapid development of underwater
robotic platforms, such as a remote operated vehicle
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(ROV) [1], autonomous underwater vehicle (AUV) [2], and
bionic robotic fish [3], has greatly facilitated human explo-
ration of the oceans. However, research on underwater robots
is still at the semiautonomous stage. Most of their underwater
operations cannot be carried out without human participation.
The main reason is that the complex underwater environment
restricts the perception of robots. 3-D vision, as an important
component of robot perception technology, has been widely
used in obstacle avoidance [4], target grasping [5], simultane-
ous localization and mapping (SLAM) [6], and so on, which
greatly improve the intelligence of robots. However, due to
the special characteristics of the underwater environment (light
absorption and particle scattering), common 3-D measurement
devices, such as LiDAR and RGB-D cameras, cannot be
used directly in the water. In addition, the acoustic-based
underwater measurement technique has a long measurement
distance but low accuracy and high noise level. For now,
underwater high-precision 3-D reconstruction mainly relies on
vision methods, which are divided into passive vision and
active vision.

Passive vision [7] refers to the direct reception of light
reflected from objects to acquire information, such as under-
water cameras. Due to the poor quality of underwater imag-
ing, image enhancement and recovery are generally required,
which is technically difficult. In addition, underwater environ-
ments have fewer texture features compared to land, so current
underwater 3-D reconstruction by passive vision can only be
performed well in bright laboratory pools, which is hard to
apply to underwater low-light environments.

In contrast to passive vision, active vision involves actively
projecting specific light onto a target object and receiving
its reflected light to achieve measurements. It is obvious that
active vision can create artificial features that are more favor-
able to be extracted in the low-light underwater environment,
so binocular stereo matching is easily achieved. In addition,
laser rays contain enormous amounts of energy. It can be
largely unaffected by particles in the water. For this reason,
a binocular structured light vision measurement system is
developed in this article to accomplish 3-D reconstruction in
the low-light underwater environment.

The rest of this article is organized as follows. In Section II,
the related work is outlined. Section III presents an overview
of the developed system. Then, in Section IV, three models of
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underwater refraction are proposed. A laser-based calibration
algorithm is given in Section V, and the multiple experiments
are conducted in Section VI. Finally, the conclusion and future
work are provided in Section VII.

II. RELATED WORKS

As the need for underwater 3-D sensing is imminent,
relevant underwater measurement devices based on different
measurement principles have been developed, such as sonar,
camera, and laser scanners.

A. Sonar

The first one is sonar [8], which utilizes the propagation
and reflection characteristics of sound waves in the water
to achieve ranging and navigation through electroacoustic
conversion and information processing. To reconstruct an
underwater cave, Mallios et al. [9] designed an AUV equipped
with two mechanical imaging sonar sensors. The distance
measurements in the horizontal and vertical directions of the
robot were achieved, respectively. However, the reconstructed
map motion distortion is severe due to the slow scanning
speed of the mechanical sonar. In addition, the sonar has
the problem of elevation angle ambiguity. Each pixel in the
sonar image corresponds to a distance in a certain bearing
range. No specific elevation angle information exists in the
image, so it is not possible to determine the exact orientation
of that distance [10]. Using a pair of wide-aperture imaging
sonars with orthogonal uncertainty axes, McConnell et al. [11]
independently observed the same point in the environment
from two different perspectives. Then, dense and fully defined
point clouds were created at each time step. However, this
method is not suitable for general 3-D scenes due to the
strong assumptions on object geometry. At present, 3-D image
sonar is widely studied as the main sensor for underwater
acoustic reconstruction [12]. Using an imaging sonar sensor,
Westman et al. [13] presented a novel method for recon-
structing particular 3-D surface points, which does not rely
on the precise image intensity values or the reflectivity of
the imaged surface to solve for the surface point locations
according to Fermat flow equation. Then, a novel framework
for object-level 3-D underwater reconstruction using imaging
sonar sensors was presented by them [14]. In this framework,
reconstruction reduces to a convex linear optimization problem
with a variety of priors and regularization terms. Then, the
alternating direction method of multipliers (ADMM) algorithm
was used to solve it. Although both simulation and real
data illustrate its superior reconstruction, the 3-D point cloud
obtained using this approach is very sparse and not suitable
for dense reconstruction.

B. Camera

Since sonar is only suitable for coarse measurements,
while cameras have been very successful in accurate 3-D
reconstruction in air, some underwater camera reconstruction
methods have been proposed. First, some used monocular for

reconstruction [15], [16]. Xiong and Heidrich [17] proposed
a differentiable framework to estimate the geometry of under-
water scenes and the time-varying water surface using ray
casting, Snell’s law, and multiview triangulation. However, the
reconstruction framework relies on a preprocessed dense and
precise correspondence matching. When the waves are driven
by excessively strong external forces and become choppy, they
are no longer in accord with the imposed smoothness regu-
larizer, and the reconstruction quality degrades. In addition,
the binocular stereo vision has been applied to underwater
reconstruction [18], [19]. Among them, a novel approach
was developed by Skinner et al. [20] in order to reduce the
absorption of light by water. The estimation of the attenuation
coefficient was integrated directly into the bundle adjustment
step during the structure recovery of the underwater scene.
This enables simultaneous estimation of the attenuation coef-
ficients for nonlinear optimization. However, image recovery
provides a limited improvement in image quality. In order to
eliminate the effect of refraction in water, Berman et al. [21]
made all of the images taken using a pair of DSLR cameras
(Nikon D810 with an AF-S NIKKOR 35-mm f/1.8G ED lens,
encased in a Hugyfot housing with a dome port) on a rigid
rig. This must make the camera’s optical center coincide with
the sphere center of the circular cover, which is difficult to
achieve, and inevitable error exists. Moreover, Kong et al. [22]
proposed a refractive camera model and an akin triangulation
by combining the underwater imaging laws. A nonlinear
relationship between the object and its corresponding image
plane points with the shell parameters was established. Then,
an NSGA-II-Based Calibration Algorithm was developed to
achieve the accurate calibration of the system. However, this
method relies on the accurate extraction of the underwater
checkerboard grid corner points. It cannot be applied to the
underwater low-light environment.

C. Laser Scanner

It is obvious that passive vision represented by cameras
is difficult to apply in most underwater environments, while
active vision measurement methods based on laser scanning
make their reconstruction possible [23], [24]. Currently, laser
scanning can be divided into three types according to the form
of scanning. The first type is not capable of scanning itself
and relies on other systems. Wang et al. [25] proposed an
underwater structured light vision calibration method consid-
ering an unknown refractive index and designed a prototype.
It was loaded on a three-axis gantry to achieve underwater
scene reconstruction. It is obvious that the reconstructed range
of this scanning method is too dependent on the external
platform motion, and less information is obtained from a single
measurement. The second type is driven by an external motor,
and the platform moves as a whole to achieve scanning. Based
on this principle, Gu et al. [26] designed a laser-based scanner
using a stepper motor to drive a laser and camera rotation.
Then, a unified laser-based 3-D reconstruction method was
proposed to realize high-accuracy measurement in various
media, such as air, glass, and water. However, the presence
of water resistance affects the scanning speed. The overall

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on July 21,2023 at 02:52:43 UTC from IEEE Xplore.  Restrictions apply. 



OU et al.: BINOCULAR STRUCTURED LIGHT 3-D RECONSTRUCTION SYSTEM 5010314

movement of the platform also generates huge inertia, which
is not suitable for the stability of the robot. The third type
uses a mirror galvanometer to reflect a laser beam to achieve
scanning. This is a static scanning method that does not affect
the platform. Chi et al. [27] achieved underwater close-range
3-D reconstruction with high accuracy and resolution using a
camera and a laser that is automatically scanned by a mirror
galvanometer. Regardless of the scanning type, the above
systems assume that the laser beams form a plane at the same
moment. However, Palomer et al. [28] demonstrated that the
laser plane of this structure is distorted when passing through
different media (air-viewport-water). Then, he proposed two
triangulation methods (ray-based and elliptical cone) [28]. The
latter is more accurate, but more computationally complex.
Castilln et al. [29] presented a novel 3-D laser scanner, which
uses a two-axis mirror to project straight lines into the water
by compensating for refraction-related distortions. Thus, plane
models can be used without loss of accuracy, which is faster
than the elliptic cones model. However, there are practical
limitations to its system. The presented approach remains
mainly at the level of theoretical research.

Although the above monocular laser scanning device has
been able to perform underwater reconstruction tasks, there are
some drawbacks. On the one hand, its hardware requirements
are high as it needs to know the precise rotation angle of
the mirror galvanometer in real time. On the other hand, its
calibration process depends on the accurate modeling of the
laser scanning surface, which Palomer proved to be nonplanar,
so the modeling is complicated and the calibration is difficult.
While the binocular ranging process is relatively simple,
we hope to combine binocular and laser scanning for active
underwater measurements. To the best of our knowledge, this
article presents the first systematic complete modeling and
laser-based calibration process of underwater 3-D reconstruc-
tion based on binocular structured light scanning.

It is worth mentioning that most of the abovementioned
camera or laser scanner-based 3-D reconstruction systems
are calibrated by extracting the corner point information
of the checkerboard grid in different positions underwater
[30]. However, for real underwater environments, passive
vision-based corner point extraction can be very difficult in
low-light conditions, resulting in large calibration errors or
even calibration failure of the system parameters, so we would
like to develop an active vision-based calibration method based
on the geometric properties of the laser.

We summarize the contributions of our work as follows.

1) An underwater binocular structured light 3-D reconstruc-
tion system with the scanning laser is designed to realize
the static high-precision scanning reconstruction of the
low-light scene, which is suitable for underwater robot
application, including grasping, surveying, and mapping.
The obtained high-precision 3-D point clouds prove the
effectiveness of our system.

2) Three models based on underwater refraction effects are
systematically proposed, among which the multimedia
binocular polar curve constraint model ensures accurate

Fig. 1. Our underwater binocular structured light 3-D reconstruction system.

laser line matching, which is a relatively cutting-edge
work.

3) A simple special calibration block is designed, and a new
multiobjective laser-based calibration algorithm based
on laser geometric constraints is proposed. The proposed
method only needs one scanning data, which greatly
simplifies the calibration process. More importantly,
this method could achieve accurate calibration in the
low-light underwater environment, which is hard for the
checkerboard-based calibration method.

III. OVERVIEW OF SYSTEM

A. System Design

In order to improve the 3-D perception capability of under-
water robots for better underwater operations, an active vision
measurement system based on binocular structured light is
designed (204 mm × 164 mm × 102 mm) in this article, and
the further integration of this system into underwater robots
is expected. The description of this underwater measurement
system is illustrated in Fig. 1. The system consists of a binoc-
ular camera, laser, mirror galvanometer, power supply system,
and waterproof housing, and the detailed hardware parameters
are shown in Table I. Among them, the binocular camera
selects the ZED camera. The laser type is MDL-SL∼520-
30-CA13334, with a fan angle of 45◦. The green laser was
chosen because the water body absorbs less blue-green light
than other light. The type of mirror galvanometer is s-8107. Its
rotation speed and rotation status can be adjusted by the input
signal. In this experiment, to mitigate the excessive transition
state current, we set the input signal as a sine wave, which
is provided by the signal generator ICL8038. In addition,
the material of the light hole is acrylic, chemically known
as polymeric methyl methacrylate (PMMA) with good light
transmission and hardness. The power supply system is shown
in Fig. 2. With the above design, our system can achieve object
reconstruction within ±20◦ angle in the horizontal direction
and ±22.5◦ angle in the vertical direction (about 400 sampling
points per scan). Specifically, when the measurement distance
is 0.5 m, the measurement range is about 0.41*0.36 m@0.5 m,
and the laser resolution is about 1.025 mm@0.5 m.

B. System Principle

Based on the previous hardware devices, our system can
work in a low-light underwater environment. First, the internal
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Fig. 2. Circuit design of our system.

TABLE I
SYSTEM HARDWARE PARAMETER TABLE

and external parameters of the system (see Section V) are
obtained by the calibration method, and the parameters are
input to the measurement model (see Section IV). Then, the
laser center is extracted and matched to obtain a series of
matching points as input to the measurement model. The depth
information corresponding to the laser lines is obtained by
solving to obtain the point cloud data. Then, using laser scan-
ning, the dense 3-D information of the scene is obtained, and
the point cloud is processed using Point Cloud Library (PCL)
to get the final 3-D reconstruction results (see Section VI).

1) Laser Center Extraction: Due to the dim underwater
light and relatively simple scene elements, it is very unfavor-
able for binocular matching, but this characteristic is exactly
beneficial for laser center extraction. First, the Gaussian filter
is used to preprocess the image, and then, the gray centroid
method is used to achieve subpixel extraction of the central
profile of the laser stripe

Um =

∑M
i=0 gi × ui∑M

i=0 gi
(1)

where Um is the laser center pixel coordinate, ui is the pixel
coordinate of each point, and gi is the gray value at that
coordinate.

2) Laser Match: In order to achieve 3-D ranging, it is
necessary to know the corresponding matching points of the
left and right cameras, i.e., the position of a laser point in
the left camera corresponding to the position in the right
camera. For laser lines, it is difficult to determine the exact

Fig. 3. Monocular ray-based refraction model. (a) Flat refractive geometry
with n layers. (b) Monocular model of our system. Notations: the direction
vectors of optical paths OAB, BC, and CT are d0, d1, and d2, respectively.
ta is the distance from the camera to the PMMA surface. tp and tw are the
thickness of PMMA and water, respectively.

corresponding points in the left and right camera imaging
planes due to the single feature. However, this can be easily
achieved by our proposed polar curve constraint equation (see
Section IV-C).

IV. SYSTEM MODEL

For terrestrial environments, the monocular pinhole imaging
model and the binocular triangulation model play an important
role in 3-D reconstruction. The proposed polar line constraint
model, on the other hand, significantly improves the accuracy
of binocular matching. However, the above three models are
no longer work underwater. In order to perform underwater
measurements, this article presents a relevant study on the
underwater camera model, which provides a rigorous theo-
retical basis for systematic measurements.

A. Monocular Ray-Based Refraction Model

During the imaging process of our camera, light in this
system passes through Water-PMMA and PMMA-Air and,
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finally, converges to the camera imaging plane. Because of
the refraction effect, the traditional pinhole imaging model
will no longer be applicable to this system camera. Therefore,
the camera imaging process under the multilayer refraction
plane is studied. As shown in Fig. 3(a), it is assumed that
there are multiple layers of media with different refractive
indices (Layer k, k = 1, . . . , n) between the target point
T and the camera optical center O . The intersection points
of light and each medium are {P1, P2, . . . , Pn}, and the
intersection point of the optical path with the imaging plane
is P0. The camera coordinate system {W } is used as the
base coordinate system, and each medium plane is parallel
to each other. The normal vectors are all n. According to the
principle of the refraction plane proposed by Agrawal et al.
[31], P0P1, P1P2, . . . , PkPk+1, . . . , PnP are coplanar, all on
the refraction plane 5. There are

Pi+1Pi+2 = αi+1PiPi+1 + βi+1n (2)

where αi+1 and βi+1 are arbitrary real numbers, i = 0, . . . , n.
For our system, there are only three media: air, PMMA, and

water, with refractive indices of µa , µp, µw, and µa < µw <

µp, as shown in Fig. 3(b). For the direction vector d0, there
is

d0 =
AB
|AB|

=
OA
|OA|

. (3)

When the image point p of the target point on the imaging
plane of the camera is known, the coordinates of P0 can be
easily found using the internal reference formula of the camera[

p
1

]
= K P. (4)

Because the distance of the camera optical center from the
refractive plane is ta , the coordinate point of P1 is

B =
ta

d0 · n
d0. (5)

Furthermore, according to (2), it is obtained that

d1 = α1d0 + β1n (6)
d2 = α2d1 + β2n. (7)

Based on Snell’s law, we can solve that

α1 =
µa

µp

α2 =
µp

µw

β1 =

√
1 − α2

1[1 − (d0 · n)2] − α1d0 · n

β2 =

√
1 − α2

2[1 − (d1 · n)2] − α2d1 · n

also for

BC =
tp

d1 · n
d1. (8)

Thus,

C = B +
tp

d1 · n
d1 =

ta
d0 · n

d0 +
tp

d1 · n
d1. (9)

Fig. 4. Binocular triangulation-like refraction model. Notations: d0, d1, and
d2 are the direction vectors of the optical path OlAB, BC, and CTl of the
left camera. e0, e1, and e2 are the direction vectors of the optical path OrDE,
EF, and FTr of the right camera. Solid lines CT and FT are ideal optical
paths, and dotted lines CTl and FTr are actual optical paths. tl and tr are the
distances from the left camera and the right camera to the PMMA surface,
respectively.

Combining (3)–(9), we can calculate the coordinate points of
C and d2. So far, the equation of the line l : CT can be
obtained

l : T = C + md2, m > 0 (10)

where m is a free variable. Because of it, a single camera
cannot determine the specific location of the target point T .

B. Binocular Triangulation-Like Refraction Model

It is obvious that just a single camera has no scale informa-
tion to obtain the specific location of the target point. Using
two cameras, a point can be uniquely determined by two
optical paths to achieve depth measurement, as shown in the
specific model of Fig. 4.

From the previous analysis in Section IV-A, C1, F2, d1
2,

and e2
2 can be easily obtained. We agree that 1 in the upper

right corner of all the letters means under the coordinate
system {WL} and 2 means under {WR}. Satisfy the following
conversion relationship:

X1
= R X2

+ T (11)

where X represents any coordinate, and R and T are the
calibrated rotation and translation matrices, respectively. Thus,
F1 and e2

1 by F2 and e2
2 can be known.

In addition, tl and tr are also related as follows:

tr = tl − T · n1. (12)

From above, the line lL : CT and the line lR : FT can
be calculated, and the intersection point of the two is the
coordinates of the requested target point. That is,{

T = C1
+ mLd1

2

T = F1
+ m Re1

2
(13)
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Fig. 5. Underwater polar curve constraint model. Notations: P is a possible
target point, corresponding to different optical paths OrDiFiP and pi on the
imaging plane of the right camera. The direction vector of FiP is e2i.

where mL and m R are free variables and can be eliminated to
obtain the coordinates of T .

However, in the actual process, the straight lines lL and
lR may be heterogeneous due to the existence of systematic
errors, i.e., (C1F1

× d1
2) · e1

2 ̸= 0, as shown by the dotted line
CTl and FTr in Fig. 4.

The equations of the left plane of refractive 5L and the
right plane of refractive 5R can be easily derived from the
geometric point relations as follows:

5L :
(
Pl − A1, d1

0, n1)
= 0

5R :
(
Pr − D1, e1

0, n1)
= 0 (14)

where Pl , Pr is any point on the plane 5L , 5R .
Therefore, the equation of the line of intersection L of the

two planes can be found

L :

{(
T ′

− A1, d1
0, n1)

= 0(
T ′

− D1, e1
0, n1)

= 0
(15)

where T ′ is any point on the line L .
It can be known that the imaginary point of the two optical

paths must be on the straight line L , so the target point we
consider must be on L . For this reason, the target point is
defined as a point on L with the minimum sum of the distance
from lL and lR . That is,

T = arg
T

min
(∣∣TC1

× d1
2
∣∣ +

∣∣TF1
× e1

2
∣∣)

s.t.

{(
T − A1, d1

0, n1)
= 0(

T − D1, e1
0, n1)

= 0.
(16)

C. Underwater Polar Curve Constraint Model

In binocular stereo matching, polar line constraint is an
important property that can be used to achieve polar line
correction for faster and more accurate matching results. How-
ever, due to the existence of multiple media, the underwater

binocular camera no longer satisfies the polar line constraint,
but we find that the matching points of the left and right
cameras still have a similar constraint, which we call the polar
curve constraint here, as shown in Fig. 5. Assuming that a
point pL is known under the left camera image coordinate
system, the purpose of the polar curve constraint is to find the
possible location of pL in the right camera image coordinate
system.

By using the monocular ray-based refraction model in
Section IV-A, the expression of the line l can be deduced with
the known pL

l : P = C1
+ md1

2, m > 0 (17)

where P is any point on the line l. m is the linear parameter
variable, and its value indicates the distance from point P to
point C. Apart from that, all other parameters can be solved
by known pL by (2)–(9).

Thus, there is a mapping between the coordinates of the
point P in {WL} coordinate system and the variable m, which
can be abbreviated as

P1
= f (m, pL). (18)

Suppose that the coordinate of P under the right camera
coordinate system {WR} is P2, using

P1
= R P2

+ T . (19)

The coordinates of P2 can also be denoted by m

P2
= RT ( f (m, pL) − T ) = g(m, pL). (20)

Suppose that the coordinates of point P are (x2, y2, z2); then,
x, y, and z can also be abbreviated as

x = gx (m, pL)

y = gy(m, pL)

z = gz(m, pL).

(21)

Similarly, assume that there is a point pi in the right
camera image coordinate system. The coordinates of F2

i and
the direction vector of the line e2

i can be expressed in terms
of pi in the {WR} coordinate system, which may be set
as (Fx (pi ), Fy(pi ), Fz(pi )) and (ex (pi ), ey(pi ), ez(pi )). Then,
the line F2

i P2 can be expressed using the coordinates of pi

X − Fx (pi )

ex (pi )
=

Y − Fy(pi )

ey(pi )
=

Z − Fz(pi )

ez(pi )
. (22)

P2(x2, y2, z2) can be known from (21). Plug it into (22){
(gx (m, pL) − Fx (pi ))ey(pi ) = (gy(m, pL) − Fy(pi ))ex (pi )

(gy(m, pL) − Fy(pi ))ez(pi ) = (gz(m, pL) − Fz(pi ))ey(pi ).

(23)

The above equation is the polar curve constraint equation sat-
isfied by the point pi under the right camera image coordinate
system corresponding to the point pL under the left camera
image coordinate system. It can be known that this curve is
only related to the variable m.
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V. LASER-BASED CALIBRATION METHOD

According to the model analysis in Section IV, the whole
system parameters include the following.

1) Camera Internal Parameters: {KL , K R}.
2) Camera External Parameters: {R, T }.
3) House Parameters: {n, tl , tr , tp, µa, µp, µw}.

Among them, the calibration of the internal and external
parameters of the camera can be performed in the air. This type
of parameter calibration method has been relatively mature.
The method represented by Zhang’s [32] calibration method
has been able to solve this kind of problem quite well.
Therefore, the air calibration part of this article is implemented
by the MATLAB calibration toolbox and will not be discussed
further. For the House Parameter part, {µa} is a constant and
can be easily obtained by searching the data, while {tl , tr , tp}

can only be roughly measured by physical means and needs to
be further calibrated. {tl , tr } has a constraint relation [see (12)],
and only one of them needs to be calibrated. Moreover, {n}

is a unit vector with intrinsic geometric constraints, so only
{nx , ny} needs to be calibrated. Considering that our mea-
surement system is mainly used for underwater reconstruction
in different environments, the refractive index of water is
changed by the influence of dissolved substances in the water.
Therefore, the refractive index of water cannot be considered a
constant. It needs to be calibrated underwater. Different man-
ufacturers produce PMMA with different refractive indices,
which also need to be calibrated. In summary, the housing
parameters that need to be calibrated underwater in our system
include {tl , tp, nx , ny, µw, µp}. Namely,

P = f (tl , tp, nx , ny, µw, µp). (24)

A. Design of Calibration Block

In order to achieve the calibration of unknown parameters,
some 2-D–3-D matching points are usually needed for sys-
tem parameter identification. However, for a real underwater
environment, the exact 3-D point coordinates are difficult to
obtain. In this system, the laser beam falling on a plane creates
a natural colinear geometric constraint, so a multiobjective
optimization is adopted to achieve the parameter calibration.
The scale problem cannot be solved by using only the laser
line geometry constraint, so a simple specific calibration block
is designed to realize the calibration. As shown in Fig. 6,
the calibration block consists of two parts: calibration plane
and alignment line. Among them, the calibration plane is
200 mm × 100 mm. The alignment line is perpendicular
to the calibration block and serves as the initial scanning
reference for the laser line. The background is arbitrary,
and the physically calibrated underwater environment can be
considered as it.

B. Laser-Based Calibration Method-Based Optimization

During the calibration process, adjust the position of the
calibration block so that the laser line is aligned with the
alignment line on the calibration block (deviations are allowed
here and have no effect on the calibration algorithm). Then,
fix the calibration block and the measuring device, and turn

Fig. 6. Laser-based calibration method-based optimization.

on the laser for scanning. As shown in Fig. 6, when the laser
is scanned, a point pair {(Pi , Pj )|i = j = 1, 2, . . . , N } is gen-
erated at the edge of the calibration plane, and each midpoint
is noted as a pair {Pm |m = 1, 2, . . . , N }, which correspond
to the left camera imaging plane {(pL ,i , pL , j , pL ,m)|i =

j = m = 1, 2, . . . , N } and the right camera imaging plane
{(pR,i , pR, j , pR,m)|i = j = k = 1, 2, . . . , N }, respectively.
It is obvious that {(pL ,k, pR,k)|k = i, j, m = 1, 2, . . . , N } is a
strict matching point relationship, which is substituted into the
measurement model in Section III to obtain {(Pi , Pj , Pm)|i =

j = m = 1, 2, . . . , N }, the 3-D coordinates of each point.
Of course, these coordinates cannot be derived specifically at
this time and contain parameters to be calibrated. Namely,

Pn = f (tl , tp, nx , ny, µw, µp, pL ,k, pR,k)

k = i, j, m = 1, 2, . . . , N . (25)

However, {(Pi , Pj , Pm)|i = j = m = 1, 2, . . . , N } points
satisfy the following constraint relations.

1) Scale Constraint: The lengths of minN
j=1 |PiPj| are the

width w of the calibration plane

loss1 =

N∑
i

∣∣∣∣ N
min
j=1

∣∣∣∣PiPj| − w|. (26)

2) Isometric Constraint: Pi−1 Pi is equal in length to
Pj−1 Pj

loss2 =

N∑
i= j=1

||Pi−1Pi| − |Pj−1Pj||. (27)

3) Parallel Constraint: Pi−1 Pi is parallel to Pj−1 Pj

loss3 =

N∑
i= j=1

∣∣∣∣ Pi−1Pi · Pj−1Pj

|Pi−1Pi||Pj−1Pj|
− 1

∣∣∣∣. (28)

4) Colinear Constraint: Pm on Pi Pj

loss4 =

N∑
i= j=m=1

√
|PiPj|2 −

(PiPm · PiPj)2

|PiPm|2

. (29)
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Algorithm 1 Calibration Algorithm
Input: x : house parameters initial value

i : number of interactions;
ω: inertia weight; c1, c2: learning factors;
(w1, w2, w3, w4): loss weights

Output: optimal tl , tp, nx , ny, µw, µp

1: Random initialization of population parameters: x0, v0
2: Laser centerline extraction, see Eq. (10) for details
3: Laser point extraction at the edge of the calibration plate:

set{(pl , pr )}

4: for j = 0 to i do
5: get 3-D coordinates from our binocular refraction model

(Section IV-B): P = model(pl , pr , m)

6: calculate scale constraint loss: l1 (Eq. (26))
7: calculate isometric constraint loss: l2 (Eq. (27))
8: calculate parallel constraint loss: l3 (Eq. (28))
9: calculate co-linear constraint loss: l4 (Eq. (29))

10: get all loss: l (Eq. (30)), calculate fitness: f = 1/ l
11: if f >= ε (minimum expectation) then
12: break
13: end if
14: update individual optimum pbest j and population opti-

mum gbest j

15: update velocity:
v j = v j + c1 ×

(
pbest j − x j

)
+ c2 ×

(
gbest j − x j

)
16: update position:

x j = x j + v j

17: j = j + 1
18: end for

Combining the above constraints

loss = w1loss1 + w2loss2 + w3loss3 + w4loss4 (30)

where w1, w2, w3, w4 > 0 are weight parameters.
For the calibration task, it is sufficient to optimize the

parameters to be calibrated in such a way that the loss is
minimized

tl , tp, nx , ny, µw, µp = arg min
tl ,tp,nx ,ny ,µw,µp

loss. (31)

In addition, the initial values of tl and tp can be obtained
by physical measurements. Since the binocular camera is
basically parallel to the PMMA surface, the initial values of
nx and ny only need to be chosen at any value around 0,
such as −0.2. The initial value of µw can be taken as
the refractive index of pure water 1.33. By consulting the
datasheet, the refractive index of PMMA is in the interval
[1.4, 1.6], so the initial value can be set to 1.4. At this point,
the system calibration task is transformed into a multiobjective
optimization problem with known initial values. Evolutionary
algorithms, such as particle swarm optimization, can be used to
easily obtain the optimal set of parameters with known initial
values, as shown in Algorithm 1.

Fig. 7. Illustration of our experiment scene and system. (a) Experiment pool.
(b) Our system.

Fig. 8. Camera imaging results of underwater scenes with different light
intensities. (a) Bright underwater scene. (b) Low-light underwater scene.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup

As shown in Fig. 7(a), experiments are carried out in a 5 ×

4 × 1.5 m pool. Fig. 7(b) shows that our binocular structured
light system is scanning to reconstruct the target object. During
the experiment, the system is fixed in the water by a metal
bracket. Then, we control the mirror galvanometer so that the
laser scans the target object at the bottom of the pool. The
binocular camera captures the laser lines and obtains matching
pixel point pairs by our pole curve constraint model. Then, the
3-D points of the target object can be obtained through the
binocular triangulation-like refraction model proposed above.

B. Calibration Results

Currently, most underwater calibration experiments still rely
on a checkerboard grid. Its key step is the extraction of
corner points by image processing. The system can then be
calibrated by the physical constraint relationships between the
corner points. This approach is commonly used in the air
environment. However, for the underwater low-light environ-
ment, the extraction of corner points is very difficult, which
seriously affects the calibration accuracy. As shown in Fig. 8,
the checkerboard grid can be detected accurately in bright
underwater environments, while, for low-light conditions, the
checkerboard grid cannot be detected accurately.

To measure the feasibility quantitatively, we use the MAT-
LAB binocular camera calibration toolbox to obtain the corner
point reprojection error of the checkerboard grid for both
scenarios. As shown in Fig. 9, the reprojection error is about
0.25 pixels for the bright scene, which is acceptable. However,
for the low-light condition, the reprojection error is about
0.65 pixels, which is more than 0.5 pixels, and the error
is not tolerable. Moreover, we collect a total of 49 pairs
of binocular images, and 21 pairs are rejected during the
calibration. In conclusion, it is clear that the checkerboard
grid-based calibration method is no longer applicable in low-
light conditions.
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Fig. 9. Reprojection errors of checkerboard grid corner points in different
underwater environments. (a) Bright underwater scene. (b) Low-light under-
water scene.

In order to achieve high-accuracy calibration of the system
in the low-light underwater environment, a simple calibration
block with known width is designed, and the calibration task is
transformed into a multiobjective optimization problem based
on the geometric characteristics of the system laser. As shown
in Fig. 10, centerline extraction works well, both in normal
and low-light scenes. The proposed laser-based calibration
algorithm only requires one scanning data, which greatly sim-
plifies the calibration process. The specific algorithm is shown
in algorithm 1. During the experiment, the initial parameters
and the calibration results are shown in Table II. From the
calibration results, the values of each parameter are close to
the physical measurements, reflecting the reasonableness of
our calibration method.

In the experiment, the width of the calibration block plane
is chosen to be 99.94 mm, and the calibration data is obtained
by one scan. As shown in Fig. 11, using the initial parameters
before calibration, the average measurement error is 1.98 mm,
and the average measurement width is 97.96 mm. After the
proposed algorithm optimization, the average measurement
error is 0.46 mm, and the average measurement width is
99.99 mm. Moreover, the error variances before and after
calibration are 0.530 and 0.177, respectively. Therefore, our
proposed calibration algorithm can significantly improve the
measurement accuracy and stability of the system.

C. Measurement Results

Three sets of experiments are carried out to verify the
robustness of the system measurement. The first set of exper-
iments is to measure objects of different shapes and sizes, the
second set is to measure objects of different materials, and the
third set is to measure the same objects at different distances.
In addition, to verify the superiority of our proposed binocular

Fig. 10. Centerline extraction results of different light intensity (shown in
red). (a) Bright underwater scene (18.3 lx). (b) Low-light underwater scene
(0.8 lx).

Fig. 11. Comparison of measurement error before and after calibration.

Fig. 12. Measurement results of underwater objects with a square surface
(about 100 mm). (a) Edge point cloud obtained by triangulation model
(air). (b) Measurement result by triangulation model (water). (c) Edge point
cloud obtained by our proposed binocular triangulation-like refraction model.
(d) Measurement result by triangulation model (air). (e) Edge point cloud
obtained by triangulation model (water). (f) Measurement result by our
proposed binocular triangulation-like refraction model.

triangulation-like refraction model, comparative measurements
are performed for each measurement.

1) Measurement Results of Different Shapes and Sizes:
In order to obtain the measurement results of our system
for objects of different shapes and sizes in the low-light
underwater environment, we fix it at a height of about 500 mm
from the bottom of the pool and measured the surfaces of
different objects (plastic) at the bottom of the pool, including
circle 1, circle 2, square 1, square 2, and equilateral triangle 1,
similar to Fig. 10(b).

In the actual measurement process, we only need to use the
pixel coordinates of the center of the laser line at the edge of
the left and right camera imaging planes and substitute them
into the imaging model to obtain the edge 3-D coordinates,
as shown in Fig. 12.
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TABLE II
SYSTEM CALIBRATION RESULTS

TABLE III
MEASUREMENT RESULTS OF DIFFERENT SHAPES, SIZES, AND MATERIALS

TABLE IV
RECONSTRUCTION RESULTS AT DIFFERENT TURBIDITIES

In the same way, the dimensions of the surface of a variety
of objects underwater are measured, as shown in Table III
(plastic). By analyzing the errors, it is obvious that our pro-
posed refraction model has the smallest measurement errors,
and all of them are less than 1 mm. For all types of planes,
the average measurement error is within 1%. There is no
doubt that the triangular model calibrated in the air has the
largest error (2%–4%). The model calibrated in water, on the
other hand, aims to trim the effect of underwater refraction
effects using aberration correction. The measurement error
is reduced, in the range of 1%–2.5%, but it is still large,
and the measurement accuracy is smaller than our refraction
model. In conclusion, the underwater refraction effect cannot
be treated simply as an aberration. The proposed refraction
model can effectively reduce its impact.

2) Measurement Results of Different Materials: In order to
verify the effectiveness of the system for measuring different
materials, two additional sets of experiments were imple-
mented on the basis of the abovementioned target objects made
of plastic. In this case, the additional target objects were made
of metal and wood, respectively. The results of all experiments

are shown in Table III. From the experimental results, it can
be seen that the measurement accuracy of plastic objects is
slightly higher than metal and wood objects. This is due to
the different reflections of different materials for laser light.
The metal surface is too smooth and reflects strongly. The
wood surface is too rough and has severe diffuse reflection.
These factors will affect the extraction of the center line of the
laser stripe, which will produce noise during the measurement
process and affect the measurement accuracy. However, these
noise points are few and do not affect the overall measurement
results. In summary, the proposed binocular structured light
vision measurement system can obtain satisfactory results for
objects of different materials, which is applicable for most
underwater measurement scenes.

3) Measurement Results at Different Distances: In order
to obtain the measurement results of the system at different
distances, the system is fixed at the heights of about 500,
700, and 900 mm from the bottom of the pool, respectively.
As is shown in Fig. 13, the object with a side length of about
130-mm equilateral triangle on the surface of the pool bottom
was scanned and measured, and its edge point cloud was
obtained in the same way as above. The measurement error is
shown in Fig. 14. It can be seen that the measurement error
generally increases as the measurement distance increases,
but our refraction model is also all much smaller than the
triangulation model error. To the best of our knowledge, our
system achieves state-of-the-art measurement accuracy for the
same underwater measurement distance. This accuracy is more
than sufficient for our future robotic operations.

D. Underwater 3-D Reconstruction Results at Different
Turbidities

In order to further verify the performance of our system,
3-D measurement experiments of two regular planes, a hemi-
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TABLE V
COMPARISON OF STATE-OF-THE-ART METHODS FOR UNDERWATER MEASUREMENT AND 3-D RECONSTRUCTION

Fig. 13. Measurement results of triangle 1 at different distances. The first
to the third row corresponds to about 500, 700, and 900 mm, respectively.
(a) Measurement results by triangulation model (water). (b) Measurement
results by triangulation model (water). (c) Measurement results by our
proposed binocular triangulation-like refraction model.

Fig. 14. Average measurement errors at different distances.

sphere, and an irregular starfish under a low-light underwater
environment have been carried out. The light intensities were
both less than 1 LX. In addition, for underwater environments,
turbidity is another important factor affecting the reconstruc-
tion quality. It has been shown that water becomes significantly
turbid at 4 NTU and above [33]. For this reason, three test
environments with turbidity levels of 2, 10, and 30 NTU were
deployed, representing low turbidity, moderate turbidity, and
high turbidity, respectively.

1) Reconstruction Results for Regular Shapes: In order
to verify the reconstruction effect of the system for regular
shapes, the plane circle, plane square, and cubic hemisphere
are scanned and reconstructed, respectively. Fig. 15 shows the
reconstruction results for three surfaces from low turbidity to
high turbidity. After getting the point cloud of the object’s
surface, the plane and sphere are fit to the point cloud. The
distance of each point from the fitting surface is calculated as
the reconstruction error. The specific quantitative results are

Fig. 15. Reconstruction results of regular shapes with different turbidity
levels. (a) Low turbidity. (b) Middle turbidity. (c) High turbidity.

shown in Table IV. It can be seen that, in the low turbidity
water environment, the average error of our system reconstruc-
tion is within 1 mm, which achieves high accuracy. With the
increase in turbidity, the average error and variance become
larger. The average reconstruction error of the system at high
turbidity does not exceed 3 mm, and the fit sphere radius
error does not exceed 2 mm. This is due to the increasing
attenuation of the laser in the water as the turbidity increases,
which makes the extraction of the laser center line more and
more difficult. However, the underwater reconstruction result
is satisfactory even for the complex underwater environment
because measurement accuracy is sufficient for our future
robotic manipulation.

2) Reconstruction Results for Irregular Shape (Starfish):
To further verify the robustness of the system under differ-
ent turbidity levels, an irregular starfish was reconstructed,
as shown in Fig. 16(a). In order to quantitatively compare the
reconstruction results, the 3-D point cloud ground truth of the
starfish needs to be acquired, which is achieved in the exper-
iment by a high-precision depth camera (Mech-Eye Nano) in
air, as shown in Fig. 16(b). Fig. 16(c), (e), and (g) shows
the starfish reconstruction results of our system under water
with different turbidity levels, respectively. Then, the iterative
closest point (ICP) matching algorithm is applied between
the true value and the point cloud obtained by our system.
The matching results are shown in Fig. 16(d), (f), and (h). The
root mean square (rms) is 0.499, 1.164, and 1.579 for different

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on July 21,2023 at 02:52:43 UTC from IEEE Xplore.  Restrictions apply. 



5010314 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Fig. 16. Reconstruction results of starfish with different turbidity lev-
els. (a) Picture of real starfish. (b) Ground truth by the depth camera.
(c) Reconstruction result at low turbidity. (d) ICP result at low turbidity.
(e) Reconstruction result at middle turbidity. (f) ICP result at middle turbidity.
(g) Reconstruction result at high turbidity. (h) ICP result at high turbidity.

turbidity levels. The results are similar to the previous regular
object reconstruction.

E. Discussion

According to the experimental results, our binocular struc-
tured light 3-D reconstruction system can measure objects of
different materials and shapes at different distances with high
accuracy in low-light underwater environments. In addition,
excellent reconstruction results are achieved for both regular
and irregular objects in different turbid waters. This is mainly
attributed to the clever design, the accurate model, and the
new laser-based calibration algorithm of the system proposed
in this article.

It is obvious that, due to the severe light attenuation in
water, it is difficult for a simple binocular camera to perform
3-D reconstruction underwater in low light [19], [22], [36].
Our system combines a binocular camera and laser to achieve
high-accuracy measurement and reconstruction in turbid and
low-light underwater. In addition, compared to the overall
rotation of the system [26], [35], the galvanometer-based
static scanning design is more suitable for robotic operation
applications.

As can be seen in Table III, the accuracy of our refraction
model measurements is much higher than that of the con-
ventional triangular model (calibrated in air [32] or underwa-
ter [37]). This is because, when the system is placed to work
in an underwater environment, the light penetrates through
multiple layers of media and converges on the camera imaging
plane. During this time, a significant refraction effect occurs.

Therefore, the light cannot simply be considered to travel
along a straight line in this situation. Thus, the traditional limit
constraint model is no longer valid. An underwater polar curve
constraint model is proposed to ensure accurate matching of
the laser points of the left and right cameras.

Currently, most underwater 3-D reconstruction systems’
calibrations rely on a checkerboard [27], [28]. However, for
underwater low-light environments, this checkerboard-based
calibration method is difficult to use directly. Therefore, our
proposed laser-based calibration algorithm is of great impor-
tance in low-light environments. As can be seen from Fig. 11,
excellent calibration results are achieved even in environments
less than 0.9 lx.

Of course, measurement errors inevitably exist. In the
experiments, we found that it can be divided into three main
categories. The first type of error is mainly generated by the
system’s own hardware. For example, the resolution of the
camera affects the extraction of the pixel coordinates of the
center of the laser line. Our method uses the gray centroid
method to achieve subpixel extraction and mitigate its effect.
The second type of error is mainly caused by the system mea-
surement model and calibration errors. Our proposed method
is significantly superior in this type of error. The third type of
error is due to the external environment, which usually affects
imaging quality and is the most significant source of error,
including the turbidity of the water, the surface properties of
the measured object, and so on.

At present, a lot of research work on underwater mea-
surements and 3-D reconstruction is being carried out due
to their importance for the operation of underwater robots.
However, it is impossible to compare our system quantitatively
with other research results due to the different principles,
experimental environments, and so on. Therefore, we follow
the comparison approach [22] and compare our system with
the latest cutting-edge work, as shown in Table V. It is clear
that our system has very high measurement and reconstruction
accuracy, reaching the current state-of-the-art level. In addi-
tion, compared to other systems, our system is more robust
to the environment and can operate in extreme underwater
environments. Moreover, the system does not interfere with the
robot’s motion, which makes it more suitable for underwater
robot applications, including underwater grasping, surveying,
and mapping.

VII. CONCLUSION AND OUTLOOK

In this article, an underwater binocular structured light 3-D
reconstruction system based on mirror galvanometer scanning
is designed, which achieves high-accuracy static scanning
reconstruction of underwater low-light scenes. On this basis,
we systematically propose the underwater monocular imag-
ing model and the binocular ranging model considering the
refraction effect to improve the measurement accuracy. More
importantly, the underwater binocular polar curve constraint
model is proposed for the first time, which greatly improves
the matching accuracy of laser stripe centerline. In addition,
in order to better adapt to the underwater low-light environ-
ment, a simple calibration block with known width is designed,
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and a new laser-based calibration algorithm based on action
vision is proposed. The calibration task is transformed into a
multiobjective optimization problem based on the geometric
characteristics of the system laser. The proposed laser-based
calibration algorithm only needs one scanning data, which
greatly simplifies the calibration process. From the final exper-
imental results, it is clear that our system has very high calibra-
tion, measurement, and reconstruction accuracy in a low-light
environment, reaching the current state-of-the-art level.

At present, there is a relative lack of close-range high-
precision 3-D reconstruction means for the underwater low-
light environment, and our system will be expected to be
applied to this special environment in the future, which can
realize close-range 3-D perception of underwater robots for
navigation, obstacle avoidance, grasping, and so on.
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