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Abstract—Underwater collision-free navigation and dense
reconstruction are essential for marine refined exploration.
However, existing passive vision-based methods are difficult to
apply in low-light and weak-feature underwater environments.
In this article, a more adaptable three-dimensional (3-D) dense
mapping robotic system based on self-designed scanning binocu-
lar structured light (BSL), named ROV-Scanner, is developed to
address this challenge. First, the measurement principle based on
the refraction model ensures its high accuracy. Second, an under-
water 3-D dense mapping algorithm fusing the Doppler velocity
log (DVL), inertial measurement unit (IMU), and pressure sensor
multifrequency information is proposed to realize dense mapping
during robot motion. Then, an air–water two-stage extrinsic
calibration algorithm is proposed. In particular, the extrinsic
parameters between DVL and camera are innovatively calibrated
using BSL, enhancing robustness. Furthermore, for the first time,
a framework of BSL-based collision-free navigation is presented
to guarantee the safe movement of the system in unknown
environments. Experimental results show that our system can
simultaneously achieve autonomous collision-free navigation and
dense mapping in dark underwater environments, which has
great potential for application in marine refined exploration.

Index Terms—Refined exploration, structured light vision,
underwater collision-free navigation, underwater dense mapping.
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I. INTRODUCTION

W ITH the continuous development of human marine
engineering, autonomous underwater robots [1] are

playing an increasingly important role, including underwater
garbage grabbing [2], structure overhauling [3], and underwa-
ter exploration [4]. Among them, for the field of marine refined
exploration, collision-free navigation and dense mapping for
robots are of great importance [5]. The autonomous navigation
ability of a robot will be directly related to its intelligence,
which is one of the key foundations for autonomous explo-
ration [6]. It has been a research difficulty to ensure that robots
can safely navigate to the target area by avoiding obstacles in
unknown underwater environments. In addition, the creation
of dense maps is essential for environmental monitoring,
including the observation of biological populations [7]. It is
indispensable in the refined exploration process. However, the
acquisition of dense point clouds has always been challenging
for underwater environments. Therefore, the motivation of this
article is to simultaneously realize collision-free navigation
and dense mapping for robots in unknown environments
refined exploration.

Currently, passive vision devices represented by monocular
and binocular cameras are widely used in underwater robot
collision-free navigation due to the low cost and rich per-
ception information. Lv et al. [8] proposed a collision-free
planning and control framework based on binocular, which
consists of obstacle avoidance planning, arctangent nonsin-
gularity terminal sliding mode control, and fuzzy inference.
The robot’s collision-free navigation in dynamic environments
was finally realized. Furthermore, to achieve reliable map-
less underwater navigation, a low-cost end-to-end navigation
system based on a monocular camera and a fixed single-
beam echo sounder was introduced by Yang et al. [9]. In
addition, Manderson et al. [10] implemented obstacle avoid-
ance and target selection for a six-legged underwater vehicle
by processing data acquired by a monocular camera through
a convolutional neural network. They found that using real-
time visual feedback to make proximity navigation decisions
in specific environments, such as coral reef formations, is
unrivaled by other sensors. It can be seen that the above
work has achieved promising results in the field of robot
collision-free navigation based on passive vision. However,
as for the underwater environment, due to the absorption
of light by the water and the scattering of particles in the
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water, the underwater environment is usually characterized by
weak illumination. Arain et al. [11] pointed out that, due to
visibility, the camera may incorrectly recognize free space and
obstacles in the environment, thus giving an incorrect response
to the trajectory planner with disastrous consequences. Then,
they proposed combining feature-based stereo matching with
learning-based segmentation to produce a more robust obstacle
map. However, due to the scarcity of underwater features,
the maps produced were very sparse and difficult to use
for refined exploration. Although Hernández et al. [7] has
achieved the dense reconstruction of underwater vehicles in
navigation based on monocular depth estimation using a semi-
global matching-like multi-image method, it was similarly
unable to be used in dark conditions. Therefore, collision-
free navigation of robots and dense mapping for refined
exploration in unknown dark environments deserve further in-
depth research.

Compared to passive vision, underwater structured light
systems based on the principle of active vision have been
shown to be more suitable in underwater three-dimensional
(3-D) perception [12]. Using the high penetration of laser
in water, the system is less affected by the water [13].
Palomer et al. [14] developed a structured light scanning
system which is possible to produce full 3-D perception by
using a mirror-galvanometer to steer a laser line projector and
using triangulation with a camera. Ou et al. [15] designed
a binocular structured light (BSL) 3-D reconstruction system
for low-light underwater environments. The system proved
to be more adaptable underwater in different turbidity levels
compared to binocular camera. Therefore, it is reasonable to
believe that underwater structured light system will bring new
inspiration to underwater simultaneous collision-free naviga-
tion and dense mapping.

However, most of the current studies fix the structured light
system on static platforms and use it to realize 3-D reconstruc-
tion of small objects [16]. Only a few works have assembled
structured light systems for underwater robots [17]. In order
to build a map for a larger scene, Palomer et al. [18] carried a
structured light scanner on an autonomous underwater vehicle
to achieve the inspection of underwater structures. By fusing
Doppler velocity log (DVL), inertial navigation system (INS),
and pressure sensor, they realized to build a map of a 1.4
× 1.4 × 1.2 m artificial water pipe. Bodenmann et al. [19]
designed a mapping system consists of a camera, a line laser,
LED panels, and a PC in a pressure tight housing, named
SeaXerocks 1, which can be mounted on an underwater robot.
Combined with the navigation data provided by the robot,
they achieved partial mapping of the seafloor at a depth
of more than 2000 m in the Pacific Ocean. Hitchcox and
Forbes [20] fused a commercially available underwater laser
scanner named Insight Pro with the DVL-INS to realize a 3-D
scan of an underwater shipwreck in Wiarton, ON, Canada.
Using laser-based loop closure, they improved self-consistency
in underwater mapping. It can be seen that the few existing
works based on structured light systems have achieved better
results in underwater mobile dense mapping. However, robots
still rely on traditional navigation during map construction,
or manual remote control, without utilizing the wealth of

information gained from structured light, which is a great loss
in the exploration of unknown dark environments. Moreover,
the stitching of single-line point clouds during structured light
mapping relies entirely on the results of low-speed DVL-INS
dead reckoning (DR), which lead to serious loss of some point
cloud information. A better way to merge needs to be utilized.

It is worth mentioning that DVL, as a commonly used
underwater speed sensor, is widely used with cameras for robot
navigation and mapping. Since the DVL can only be used
underwater, the extrinsic parameters between the two must be
calibrated underwater, which is made difficult by the presence
of water. Therefore, most systems use physical measurements,
which will undoubtedly introduce unknown errors. There are
few references to calibration in the literature. By posting
AprilTag fiducials underwater, camera-DVL calibration was
implemented by Westman and Kaess [21]. Xu et al. [22]
pointed that this method can reach high calibration accuracy,
but is not applicable for open sea. Then, they achieved the
calibration between the camera and DVL using feature points
extracted from the environment. However, the refraction effect
on the camera imaging was not considered. What is worse is
that purely visual feature point extraction in some open scene
is very difficult, such as turbid water. Considering that BSL is
little influenced by water, it is desired to use its information
to achieve the extrinsic calibration of DVL in this article.

In conclusion, we note that the following issues still exist
for practical applications in the field of underwater refined
exploration that are worth studying.

1) Collision-Free Navigation: a) Rely on passive vision and
tend to fail under dark water and b) weak feature areas
are difficult to achieve robust obstacle detection.

2) Dense Mapping: a) Rely on DR data for map stitching,
but DR data tends to be slower than point cloud
acquisition, with significant loss of information and
b) dense map information is not utilized in the navigation
framework to enhance robustness.

3) DVL-Camera Extrinsic Calibration: a) Rely on extrac-
tion of corner points of the checkerboard grid, which
tends to fail in dark and turbid underwater environments
and b) the underwater refraction effect is not considered.

In order to solve the above problems, we utilize the structured
light system to realize the underwater collision-free navigation
and dense mapping for refined exploration in unknown dark
environments. The main contributions are as follows.

1) A more adaptable 3-D dense mapping robotic system
based on self-designed scanning BSL, named ROV-
Scanner, is developed for refined exploration, where the
on-board design allows for autonomous mobility and
operational capabilities. A more efficient underwater 3-D
dense mapping algorithm fusing DVL, inertial measure-
ment unit (IMU) and pressure sensor multifrequency
information is proposed to realize dense mapping during
robot motion.

2) An air–water two-stage underwater multisensor calibra-
tion method is presented. In particular, the extrinsic
parameters between DVL and camera are innovatively
calibrated using BSL based on graph optimization,
enhancing robustness.
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Fig. 1. Architecture of ROV-scanner. (a) 3-D model and key components. (b) Physical prototype and software pipeline.

3) A framework of BSL-based collision-free navigation is
presented to guarantee the safe movement of the system
in unknown dark environments. To the best of our
knowledge, this is the first work that can simultaneously
realize autonomous collision-free navigation and dense
mapping in dark underwater environments by utilizing
active structured light vision.

II. OVERVIEW OF ROV-SCANNER SYSTEM

A. Hardware Design

As shown in Fig. 1(a), the system mainly consists of BSL
system, IMU, DVL, BlueROV, pressure sensor, and onboard
controllers. Among them, the BSL contains a binocular cam-
era, a blue line laser emitter, and a mirror-galvanometer.
Through the reflection of the mirror, it enables static scanning
of the scene. The IMU can provide the linear acceleration
and angular velocity information at 400 Hz, and the DVL can
provide speed information at 12 Hz. BlueROV is a commercial
underwater robot that we use as the motion module of the
system. The pressure sensor can measure the absolute water
pressure at the location of the robot in 60 Hz, which has
a full-projectile relationship with the absolute depth. So it
can be used to get the robot depth information. In addi-
tion, the controllers involved in the system are STM32F407,
NUC11TNH, Raspberry Pi 3B+. The NUC11TNH is the main
controller and is responsible for all the algorithmic processing.
The STM32F407 and Raspberry Pi 3B+ are responsible
for the scanning control of the mirror-galvanometer and the
underlying motion control of the system, respectively. Detailed
parameters of some hardware are shown in Table I.

B. Software Pipeline

The software pipeline of ROV-Scanner includes four mod-
ule: 1) perception module; 2) motion module; 3) mapping
module; and 4) navigation module, as shown in Fig. 1(b).
In perception module, binocular laser refraction measurement
model is conducted to obtain accurate 3-D data (Section IV-A).
Pressure data is converted into depth information by Pascal’s
Law. In addition, an innovative calibration method is proposed
to calibrate the extrinsic parameters between BSL, IMU, and
DVL (Section III). The motion module is mainly responsible
for the execution of system movement command. In the exper-
iment, the sensor information from the perception module is

TABLE I
SYSTEM HARDWARE PARAMETERS

used to realize the closed-loop control of the system to ensure
the stable motion. Furthermore, a mobile dense mapping algo-
rithm based on multifrequency information fusion is proposed
in the mapping module (Section IV-B). By processing the
dense point cloud, the scene obstacles can be perceived in real
time. We then use this information to implement collision-free
navigation in the navigation module (Section VI). Meanwhile,
to achieve efficient underwater exploration, the fusion results
in the perception module are utilized to enable the system
to cruise the target area. All algorithms are deployed on the
onboard NUC11TNH with Docker + Ubuntu 20.04 + Robot
Operation System.

III. AIR–WATER TWO-STAGE EXTRINSIC CALIBRATION

Notations: Some necessary notations are introduced in this
section. W denotes the world coordinate system. L denotes
the left camera coordinate system. R denotes the right camera
coordinate system. I denotes the IMU coordinate system
and D denotes the DVL coordinate system. The point cloud
obtained from a single computation of BSL is called a Scan.
It is worth mentioning that the coordinate system of Scan is
S , which is consistent with L and is not distinguished below.
What is more, pA denotes the representation of p under the
coordinate system A. TB

A denotes the transformation matrix
from the coordinate system A to the coordinate system B.
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Fig. 2. Schematic of extrinsic calibration.

In order to realize the fusion of information from different
sensors, the extrinsic parameters between the binocular cam-
era, IMU and DVL need to be calibrated in ROV-Scanner,
as shown in Fig. 2. In general, the binocular camera and
IMU are encapsulated in a waterproof chamber with fixed
relative positions and can work in air. DVL must be used in
water. Existing calibration methods based on passive vision are
difficult to apply in dark underwater environments. So we hope
to utilize active vision to achieve calibration. In order to avoid
the difficulties posed by the water environment for calibration
problems as far as possible, the air–water two-stage extrinsic
calibration algorithm is proposed: first, the transformation
matrix TL

I and TL
R is calibrated in air using visual and inertial

information, and then the transformation matrix TL
D between

left camera and DVL is calibrated underwater using point
cloud from BSL and DR data from DVL, which is more robust.
Finally, the transformation matrix between IMU and DVL can
be obtained indirectly by TI

D = TI
LTL

D.

A. Air Calibration Between Binocular and IMU

In the air, methods for extrinsic calibration between binoc-
ular camera and IMU are well established. There are many
open source works that are capable of performing this task.
First, the OpenCV library is used to calibrate the extrinsic
parameters between the right and left camera. Then, the most
commonly available calibration algorithm Kalibr is introduced
to get the transformation matrix between IMU and left camera.
See [23] for more details.

B. Underwater Calibration Between Left Camera and DVL

Given that structured light is more robust than passive
vision underwater, we innovatively propose for the first time to
utilize the point cloud information obtained from our BSL to
realize the extrinsic calibration of DVL. Specifically, utilizing
structured light system we can obtain a local point cloud
map of the system at two moments during its motion, and
the relative state estimation of the system can be obtained
through the point cloud alignment registration generalized-ICP
(GICP) [24]. In this process, the DR of DVL also realizes the
state estimation of the system. As a result, we can get the laser
relative state estimation and acoustic relative state estimation
corresponding to each other. Subsequently, we construct the
factor graph shown in Fig. 3 to realize the optimization of
the TI

D.

Fig. 3. Factor graph of extrinsic calibration between left camera and DVL.

Suppose the set of matched BSL and DVL transformation
matrices {TL0

L1
, TL1

L2
, . . . , TLm−1

Lm
} and {TD0

D1
, TD1

D2
, . . . , TDm−1

Dm
}

have been obtained. The representation of BSL information in
the D coordinate system can be obtained using the coordinate
transformation, and the transformation relation is as follows:

T̂
Di−1
Di

= (TL
D)

−1
TLi−1
Li

TL
D. (1)

Denote TI
D as

TL
D =

[
RL
D pLD
0 1

]
. (2)

Then, the residual vector rDi−1
Di

of inertial and acoustic
information can be expressed as

rDi−1
Di

=
[

log
(

RDi−1
Di

(R̂
Di−1
Di

)T
)∨

, pDi−1
Di

− p̂Di−1
Di

]
(3)

where log(·)∨ denotes the map from the 3-D rotation group
SO(3) to the Lie-Algebra so(3). Therefore, the process of
extrinsic calibration between left camera and DVL can be
transformed into the optimization of the following function:

arg min
TL
D

i=1∑
m

∥∥∥rDi−1
Di

∥∥∥2
∑D

i

(4)

where
∑D

i denotes the information matrix of the residuals.

IV. UNDERWATER MOBILE 3-D DENSE MAPPING

A. Refraction Measurement Model of BSL

For the BSL, the camera is mounted in a waterproof cabin.
When imaging, light passes through water, glass, and air in
turn, and then reaches the camera optical center. Refraction
effect occurs when it crosses the multilayer medium, as shown
in Fig. 4(a). It is pointed out in [25] that the conventional
triangulation model does not work in the presence of refrac-
tion. Combined with our existing work [26], an underwater
binocular laser measurement model based on the refraction
model is proposed to realize accurate measurement of our
ROV-Scanner system, as shown in Fig. 4(b). Where, Ii is the
intersection of the medium of the rays, and ri is the direction
vector of the rays. i = 0, 1, 2 denote air, glass, and water
media, respectively.

In the experiment, the laser centerline is first extracted using
the grayscale center of gravity method, and then the calculation
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Fig. 4. Underwater refraction model. (a) Flat refractive geometry with
multilayer. (b) Binocular laser measurement model of ROV-Scanner system.

of 3-D coordinates begins. The unit vector r0 can be obtained
from the imaging model of the camera in air as follows:

r0 =
−→
OI0

|−→OI0|
,
−→
OI0 = K−1[ x y 1

]T (5)

where O is the optical center of the camera, I0 is the
intersection of the ray with the imaging plane, K is the intrinsic
camera matrix, and (x, y) are the pixel coordinates. Using the
plane of refraction (POR) constraint [25], we get

(γ ri + ηri+1) · (ri × n) = 0 i = 0, 1 (6)

where γ and η nonzero real numbers. So if ri is known, ri+1
can be calculated as⎧⎪⎪⎨

⎪⎪⎩

ri+1 = αiri + βin i ∈ [0, 1]
αi = μi

μi+1

βi =
√

1 −
(

μi
μi+1

)2[
1 − (ri · n)2]− μi

μi+1
ri · n

(7)

where n is the refractive surface normal vector, and μi

is the refractive index. Both of them can be obtained by
measurement or calibration and are treated as known values.
So the light propagation direction vectors r1 and r2 can be
calculated by r0, which can be obtained by (5). Furthermore,
from the geometric model it is obtained that{

I1 = d
r0·n r0

I2 = I1 + h
r1·n r1

(8)

where d and h are the distance from the optical center of the
camera to the glass, and the thickness of the glass, respectively.
So the refraction points I1 and I2 can be calculated. Combining
(5)–(8), we can deduce IL2 , IR2 , rL2 , and rR2 . Due to the
existence of systematic errors, the left and right camera
imaging optical paths may not intersect in 3-D space. Suppose
the straight line l is the common vertical line, which intersects
Pl and Pr, respectively. Then, Pl and Pr coordinates are⎧⎪⎨

⎪⎩
Pl = IL2 + rL2

(
rL2 ·rR2

)(
rR2 ·i2

)−(rL2 ·i2
)(

rL2 ·rR2
)

(
rL2 ·rL2

)(
rR2 ·rR2

)−(rL2 ·rR2
)(

rL2 ·rR2
)

Pr = IR2 + rR2
(
rR2 ·i2

)(
rL2 ·rL2

)−(rL2 ·rR2
)(

rL2 ·i2
)

(
rL2 ·rL2

)(
rR2 ·rR2

)−(rL2 ·rR2
)(

rL2 ·rR2
) .

(9)

In which, i2 = IL2 − IR2 . Taking the midpoint of PlPr as
the desired target point P, the coordinates of the point P
can be easily obtained by P = (Pl + Pr)/2. So far, we can
calculate the 3-D information of the underwater scene and
dense reconstruction with can be realized by our ROV-Scanner.

Fig. 5. Different frequency for each sensor in ROV-scanner.

B. Mobile Dense Mapping Based on Multifrequency
Information Fusion

The dense 3-D information of the scene can be acquired
using our ROV-Scanner system. It can acquire a Scan point
cloud at approximately 40 Hz. A map is defined as the set
containing m Scans {s0, s1, . . . , sm}. The task of mapping is to
unify multiple Scans within a map under the coordinate system
S0 of the first Scan. Existing structured light-based underwater
dense mapping methods mainly rely on DR. However, the
acquisition rate of DR is much lower than the Scan point
cloud, resulting in a large amount of data information loss. So
we introduce IMU inertial information at high frequencies as
well as fully utilize the DVL velocity information at medium
frequencies to achieve a denser mapping. The schematic is
shown in Fig. 5. It is mainly divided into three mapping
periods: 1) high-frequency (HF) inertial information mapping;
2) mid-frequency (MF) acoustic information mapping; and
3) low-frequency (LF) hybrid information mapping from EKF.

1) HF Mapping: IMU can provide object linear accelera-
tion information ãI and angular velocity information ω̃I at a
HF of 400 Hz, which is much faster than the Scan frequency.
So the set {ω̃I

0 , ãI0 , ω̃I
1 , ãI1 , . . . , ω̃I

k , ãIk } of inertial information
can be obtained during the two scan si−1 and si generation
time intervals. The following is IMU discrete pose integration
model in [27]:

RIi
Ii+1

= Exp
((

ω̃I
i − bWgi − ηWgi

)
δt
)

vIi
Ii+1

= gWδt + RIi
(

ãIi − bWai − ηWai

)
δt

pIi
Ii+1

= vIiδt + 1

2

(
gWδt2 + RIi

(
ãIi − bWai − ηWai

)
δt2
)

(10)

where ω̃i denotes the angular velocity measurement, g denotes
the acceleration of gravity, bgi and bai are the bias, ηgi and
ηai are the white noise, and Exp denotes the map from the
Lie-Algebra so(3) to the 3-D rotation group SO(3). So the
transformation relation TIi−1

Ii
of IMU pose can be obtained

during the two Scan point cloud acquisitions. In addition

TI0
Ii

= TI0
I1

TI1
I2

, . . . TIi−1
Ii

. (11)

Therefore, the transformation relation of IMU can be known
when si and s0 are acquired. Using TS

I , si can be transformed
to s0 coordinate system by

Ts0
si

= TS
ITI0

Ii

(
TS
I
)−1

. (12)
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2) MF Mapping: DVL can achieve stable linear velocity
measurements using the acoustic Doppler effect than IMU,
but at a LF, usually around 12 Hz, which is lower than
the scan frequency. Suppose the DVL velocity information
v1 is obtained at si+1. At this time, instead of updating
the position information using only inertial information, the
velocity information of DVL is fused to update. Thus, the
purpose of reducing the cumulative error of IMU is achieved.
At this time, the transformation matrix Ts0

si+1
of si+1 to s0

coordinate system S0 is[
RS
IRI0

Ii+1
RS
I

−1
TS
D�(pDi+1)TS

D
−1 ⊕ TS

I�(pIi+1)TS
I

−1

0 1

]

(13)

where � denotes the mapping of the 3-D vector form of
the position information to the homogeneous transformation
matrix representation, ⊕ denotes the summation of the position
parts of the transformation matrix. RI0

Ii+1
is consistent with that

in the previous (11). pDi+1 is the DVL velocity integral and
pIi+1 is the IMU acceleration quadratic integral.

3) LF Mapping: To achieve a deeper integration of inertial,
acoustic and pressure information, the classical EKF frame-
work is used, similar to [28]. Specifically, the pressure and
acoustic information are used as the observed value and the
inertial information is used as the predicted value. When
the pressure or acoustic information arrives, the observation
update is started. In practical use, a state update frequency
of 4 Hz can be achieved. The transformation matrix obtained
by EKF is considered to be more accurate than the previous
two approaches. Then, the new matrix TS0

Sj
obtained will be

directly used as a new starting point for the first two updates,
on which the HF mapping and MF mapping will continue until
the arrival of the next new EKF fusion result.

V. FRAMEWORK OF BINOCULAR STRUCTURED

LIGHT-BASED COLLISION-FREE NAVIGATION

In order to realize the refined exploration in unknown under-
water environments, real-time obstacle avoidance capability is
essential for robotic system safety. As shown in Fig. 6, we
propose the framework of BSL-based collision-free navigation
in dark underwater environments. It consists of three main
parts: 1) obstacle detection; 2) obstacle avoidance strategy;
and 3) target area cruising.

A. Obstacle Detection

In dark environments, traditional binocular-based obstacle
detection methods are no longer applicable. Instead, by utiliz-
ing BSL, the dense 3-D information of objects in dark scenes
can be easily obtained. In order to ensure real-time obstacle
detection, we would like to utilize the local map obtained
from the ROV-Scanner to realize the obstacle 3-D position
evaluation and the best motion direction prediction, as shown
in Fig. 6(a). In the experiment, the point cloud composed of
about 40 Scans is regarded as a local map M and used for
obstacle avoidance prediction. Namely

M = {si|i = 1, 2, 3, . . . , 40} (14)

Fig. 6. Framework of BSL-based collision-free navigation in dark underwater
environments. (a) Obstacle real-time detection based on binocular structured
light. (b) Obstacle avoidance strategy. (c) Target area cruising based on multi-
frequency information fusion.

where si denotes the point cloud obtained from a single
computation of BSL. To speed up the computation, voxelized
downsampling of the point cloud is performed. Assume that
the downsampled point cloud Q is

Q = {qi|qi ∈ R
3, i = 1, 2, 3, . . . , n}. (15)

Let qi = (xi, yi, zi), then the center of gravity q′ of the point
cloud Q is found using the following equation:

q′ = (x′, y′, z′) =
(∑n

i=1 xi

n
,

∑n
i=1 yi

n
,

∑n
i=1 zi

n

)
. (16)

Consider d =
√

x′2 + y′2 + z′2 as the distance from the system
to the obstacle. If d < ξ , we assume that an obstacle is
detected and continue the processing below. So ξ denotes
the minimum distance to start obstacle avoidance, which is a
positive real number.

In order to get the obstacle direction prediction, first we
compute the normal vector for each point qi in the point cloud
Q. Assuming that the set of nearest neighbors of qi is Ni, then

Ni = {qj|
∥∥qj − qi

∥∥2
< r, qj ∈ Q} (17)

where r is the nearest neighbor search radius. The normal
vector ni can be computed using the least squares method, so

ni = arg min
n

∑
qj∈Ni

∥∥n · (qj − qi

)∥∥2
. (18)

The solution to this problem can be obtained by solving the
following eigenvalue problem:

λmin · n = (C − λmin · I) · n = 0 (19)
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where I is the unit matrix, λmin is the minimum eigenvalue
in the eigenvalue problem, and C is the covariance matrix,
defined as

C = 1

|Ni|
∑

qj∈Ni

(qj − q̄i) · (qj − q̄i)
T . (20)

In which, |Ni| is the size of the set of nearest points Ni and
q̄i is the mean value of all point qi. In order to overcome the
effect of ground point cloud, normal vector-based point cloud
segmentation is applied. Namely, if arccos(ni(3)/|ni|) < ε

(ε is a small positive constant), it is removed from the point
cloud Q. In this article, n(i) denotes the ith element of the
vector n. After that, the mean normal vector n̂ of the remaining
point cloud Q′ is computed. Projecting it onto the xy-plane
yields the vector n′ = (n̂(1), n̂(2)) ∈ R

2. Then, normalize n′
to obtain the final obstacle direction prediction vector n̄ =
n′/|n′|, where |n′| is the mold length of n′.

B. Obstacle Avoidance Strategy

For the underwater mapping system, on the one hand, it
is hoped that the system can safely traverse the obstacles to
reach the destination. On the other hand, a smaller change in
the distance between the system and the obstacles is desirable,
so that the system’s mapping will be more stable. Therefore,
the direction perpendicular to the normal vector n̄ under the
current position of the system is regarded as the desired
prediction direction, and the linear expression is

line m : n̄(2)y + n̄(1)x = 0. (21)

The range that has an angle of θ with m and is no more than
d/2 away from the system is regarded as the desired position
space R. Let (a, b) be any point in R, then R is

⎧⎨
⎩

R1 = (a, b) | √
a2 + b2 ≤ d

2
R2 = (a, d) | |n̄(1)a + n̄(2)b| ≤ sin θ

√
a2 + b2

R = R1 ∩ R2, d > 0, θ ∈ [0, π
2 ].

(22)

As shown in Fig. 6(b), the desired position space is a region
of two diagonal sectors centered on the current position of
the system. By discretizing it, a series of candidate positions
P = {pi|pi = (pxi, pyi) ∈ R

2, i = 1, 2, . . . , n} can be obtained.
Suppose the set of discrete points of obstacles that have been
explored in the current map within a certain range r from
the current system is O = {ok|oi = (poi, poi) ∈ R

2, k =
1, 2, . . . , m}, and the target point is t(xt, yt). Then the best
candidate position pd is selected by the following evaluation
function:

pd = (px, py)

= arg min
pi

(
α · σ

(G(t, pi)
)− β · σ

(
m∑

k=1

Q(ok, pi

)))
(23)

where α and β denote the weights, both non-negative real
numbers. The functions G(t, pi) and Q(ok, pi) denote the
Euclidean distances of the point pi to t and ok, respectively.
σ is a normalization function that mitigates the nonsmoothing

Algorithm 1 Underwater Real-Time Obstacle Avoidance
Algorithm Based on Binocular Structure Light
Input: local map point cloud M, target point T , the set of

history obstacle points O, constant ξ, r, ε, θ, δθ , δr, α, β

Output: desired candidate position vd

1: Initialization
2: Downsample the point cloud M to get Q via voxel filtering
3: Calculate the center of gravity q′(x′, y′, z′) of Q (Eq. (16))

4: if d =
√

x′2 + y′2 + z′2 > ξ then
5: return false
6: end if
7: for qi in Q do
8: Find nearest neighbor Ni within r by KD tree (Eq. (17))
9: Compute the normal vector ni (Eq. (18)-(20))

10: end for
11: for qi in Q do
12: if arccos(ni(z)/|ni|) > ε then
13: Q′.append(pi)
14: end if
15: end for
16: Calculate average normal vector n in Q′
17: Obtain obstacle direction prediction vector n̄
18: Calculate desired position space R by θ and d (Eq. (21)-

(22))
19: Discrete R by δθ and δr to obtain candidate positions P
20: costmin = INT_MAX
21: for pj in P do
22: Calculate evaluation cost costi of pi by α and β

23: if costmin > costi then
24: costmin = costi, pd = pj
25: end if
26: end for
27: return pd

effect due to discontinuous sensor information during localized
obstacle avoidance. So

σ(G(t, pi)) = G(t, pi)∑n
i=1 G(t, pi)

σ (Q(ok, pi)) = Q(ok, pi)∑n
i=1 Q(ok, pi)

.

(24)

From this, we can get the desired candidate position that the
system expects in the next moment in order to avoid obstacles
and mapping. The overall process of obstacle avoidance based
on BSL is shown in Algorithm 1.

In subsequent practical experiments of Section VI, the
constant values ξ, r, ε, θ, δθ , δr, α, β in Algorithm 1 are set to
0.6,0.05,(π/12),(π/3),(π/12),0.1,1,1, respectively. It is worth
stating that in the proposed algorithm the constant values are
chosen in a wide range and do not require fine tuning.

C. Target Area Cruising

As a mature commercial robot, BlueROV’s underlying
control is relatively sophisticated. Both [29] and [30] designed
special controllers to ensure its base motion capability. As for
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the unknown underwater environment, the traditional position
acquisition based on global vision is not satisfied [8]. In
the previous Section IV-B, the acoustic, inertial and pressure
information are fused for robot state estimation. Therefore,
in this article, a target area cruising mechanisms based on
acoustic–inertial–pressure fusion is designed, which does not
rely on global vision to realize the closed-loop control of
the system position, as shown in Fig. 6(c). Our ROV-Scanner
performs the task in real-time motion toward the target area
based on the results of the LF fusion through the position
controller and direction controller. In this process, once an
obstacle is detected, it starts to execute the desired candidate
position obtained from our obstacle avoidance strategy to
realize obstacle avoidance as well as reconstruction of the
obstacle. Meanwhile, in order to realize the motion stability
of the system, the linear velocity provided by the DVL and
the angular velocity provided by the IMU are used to realize
the velocity closed-loop control for it. In subsequent practical
experiments of Section VI, the classical PID controller is
implemented.

VI. EXPERIMENTS

In order to verify the refined exploration capability of the
ROV-Scanner in dark underwater environment, an experimen-
tal scenario is first constructed (Section VI-A). Subsequently,
the results of the system’s extrinsic calibration are given,
and the errors in the extrinsic parameters between DVL
and left camera obtained by different methods are com-
pared (Section VI-B). Then, Scanner is fixed inside a
tank alone to statically reconstruct some regular and irreg-
ular objects (Section VI-C). After that, some underwater
mobile mapping experiments are implemented (Section VI-D).
Furthermore, simultaneous collision-free navigation and dense
mapping experiments are carried out in a pool with obsta-
cles (Section VI-E). Finally, the peculiarities of our system are
discussed (Section VI-F).

A. Experiment Environment

Refined exploration in dark underwater environments has
always been a challenging dilemma. In order to simulate this
scenario, the ROV-Scanner test experiments are conducted in a
5 × 4 × 1.5 m pool. As shown in Fig. 7, the dark underwater
scene is simulated by adjusting the external ambient light.
Plastic boxes are placed in the pool to simulate underwater
obstacles. Our system is monitored by a global camera during
motion. It is worth mentioning that the global camera is only
used to record the robot’s trajectory as the ground truth of
XY-plane and is not involved in any internal control. The
Z-direction ground truth of the trajectory is provided by a
different pressure sensor.

B. Extrinsic Calibration Results

For a multisensor system, accurate extrinsic calibration is
one of the foundations of data fusion. In our ROV-Scanner, the
extrinsic parameters to be calibrated include right camera to
left camera TL

R, IMU to left camera TL
I , DVL to left camera

TL
D. In order to avoid as much as possible the inconvenience

Fig. 7. Experimental pool with obstacles in darkness.

TABLE II
EXTRINSIC CALIBRATION RESULTS

of the water environment to the calibration process, the air–
water two-stage extrinsic calibration algorithm is applied. The
calibration results are shown in Table II.

Among them, we innovatively propose the use of structured
light to calibrate TL

D. Currently, the extrinsic parameters of
DVL are generally based on physical measurement, and there
are few methods to realize the calibration between it and
the camera. In the experiments, we first use BSL to perform
state estimation using the GICP algorithm in some structured
scenes, and record the results of DR synchronously. Two sets
of data are collected in total. Then, we perform graph-based
optimization on one set of data to obtain the extrinsic calibra-
tion results. Subsequently, the extrinsic parameters obtained
from the physical measurements and the extrinsic parameters
obtained from the calibration are each applied to another set
of data, de-transformed the DR data to the BSL coordinate
system, and then compared the mean errors of the positions.
The results are shown in Fig. 8. It can be clearly seen that after
our calibration method, the average error has been significantly
reduced, from 0.016 m in physical measurement to 0.007 m.
Moreover, the standard deviation has also been significantly
decreased, with more stable data.

C. Underwater Static Dense Mapping Experiments

Prior to mobile mapping, in order to individually test the
3-D perception performance of the BSL, the Scanner is first
fixed in a small 1.5 × 0.4 × 0.4 m tank, as shown in Fig. 9(a).
Reconstruction experiments are conducted for irregular cup
and regular walls, respectively, as shown in Fig. 9(b) and (c).
Fig. 9(d) and (e) shows the results of the reconstructed point
cloud visualization. It can be seen that the obtained point cloud
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Fig. 8. Position errors between laser relative state estimation and the trans-
formed acoustic relative state estimation using different extrinsic parameters.
(a) One-pair error. (b) Average error.

Fig. 9. Static reconstruction results. (a) Dark underwater environment in tank.
(b) and (c) Results of underwater regular wall and irregular object camera
shots, respectively. (d) and (e) Corresponding reconstruction results. (f) Point
cloud segmentation and plane fitting.

TABLE III
RESULTS OF PLANE FITTING

is pretty dense, which is rare in the underwater domain. In
addition, the obtained regular wall point clouds are processed
in order to quantitatively compare the reconstruction effects.
First, the point clouds are segmented in plane using the
point cloud segmentation technique. Then, the segmented point
clouds are fitted to the plane separately, as shown in Fig. 9(f).
The fitting results are shown in Table III. From the data in
the table, the root mean square error (RMSE) of the fitting
plane is small, reaching millimeter level. This indicates that
the reconstruction accuracy of ROV-Scanner is high and has
reached the level of the state-of-the-art (SOTA) underwater.

Then, we calculate the normal vectors from the fitting plane,
as shown in Table IV. The values of the plane angle measured
using physical instruments are used as ground truth to compare
with the fitted plane angle values. It can be seen that the
errors are quite low. The minimum error reaches 0.66% and the
maximum is only 1.37%. This proves the ability of our ROV-
Scanner system to reconstruct underwater structural features.
It is well suited for high precision and dense reconstructions
in underwater environments.

TABLE IV
COMPARISON OF ANGLE MEASUREMENT RESULTS BETWEEN PLANES

Fig. 10. Mobile local mapping results of plane in linear motion. (a) Static
mapping result. (b) Mapping result by only IMU. (c) Mapping result by our
method with physical measurement. (d) Mapping result by our method with
extrinsic calibration. The histogram in the lower right corner indicates the
distribution of the closest distances of the points from the ground truth.

D. Underwater Mobile Dense Mapping Experiments

In order to fully validate the ROV-Scanner’s dense mapping
performance during movement, three groups of comparison
experiments are conducted separately. In the first two sets
of experiments, local maps are shown with smaller mapping
objects to highlight the contrast in effects. After all, the
quality of the local map directly affects the obstacle avoidance
performance. The system builds a map of a plane in linear
motion for the first group. Then, it performs a rotational
motion and builds a map of a curved surface for the second
group. In the third group, the system moves freely for a long
time in a random scene. To further validate the necessity of our
multifrequency information fusion, some module comparison
experiments are included in each group of experiments.

1) Mobile Mapping of Plane in Linear Motion: In this
group, four sets of comparison experiments are implemented.
First, the ROV-Scanner is fixed on a bracket to perform a static
scanning of a plane, and the obtained point cloud is used as
the ground truth. The system then performs a linear motion.
In the second set of experiments, the system uses only the HF
inertial information from the IMU for local mapping. While
in the third and fourth set of experiments the system utilizes
our proposed multifrequency information fusion method to
build map. Among them, in order to verify the validity of our
proposed extrinsic calibration method, the extrinsic parameters
of the sensors are obtained by physical measurement in the
third set, and the extrinsic parameters used in the fourth set are
obtained by our calibration. The mapping results are shown in
Fig. 10. The point clouds obtained by the different methods
are then quantitatively compared with the ground truth, as
shown in Table V. What can be seen is that the cumulative
error of IMU is more serious than that of DVL, and relying
solely on IMU to build a map is ineffective. In contrast,
our proposed method reduces the map construction error.
Moreover, the introduction of extrinsic calibration makes the
mapping accuracy smaller than the usual extrinsic parameter
matrix using physical measurement. The average error reaches
the centimeter level, and the angle between the fitting plane
and the ground truth is only 2.85◦, which is meaningful for
underwater mobile mapping.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 24,2024 at 02:47:23 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT MOBILE

MAPPING METHODS FOR PLANE

Fig. 11. Mobile local mapping results of curved surface in rotary
motion. (a) Long time static mapping result. (b) Static local mapping
result. (c) Mapping result by Palomer’s [18]. (d) Mapping result by our
method. (e)–(h) Projections of the point clouds of (a)–(d) in the z-direction,
respectively.

TABLE VI
QUANTITATIVE COMPARISON OF DIFFERENT MOBILE MAPPING

METHODS FOR CURVED SURFACE

2) Mobile Mapping of Curved Surface in Rotary Motion:
In this experiment, the mapping target is a curved ceramic
bottle. Similarly, the ROV-Scanner is first fixed and held
stationary for a long period of time, and the scanning results
are used as the ground truth, as shown in Fig. 11(a). For better
comparison, Fig. 11(b) shows the local map result for part
of the time. The system then performs a rotational motion.
Two sets of comparison experiments are carried out. In the
first set, Palomer’s method [18] is utilized, while the second
set utilizes our proposed method. The mapping results are
shown in Fig. 11(c) and (d). Fig. 11(e)–(h) are the projections
of the point clouds of (a)–(d) in the z-direction, respectively.
For quantitative comparison, the iterative closest point (ICP)
algorithm is used to evaluate the difference between the
mobile mapping and static mapping. The results are shown in
Table VI. It can be seen that our mobile mapping method is
superior to Palomer’s which has a large motion distortion. The
projected surface area using our proposed method is closer
to the ground truth. The RMS is as low as 0.27 cm and the
average distance is only 0.15 cm.

3) Mobile Mapping of Random Scene in Free Motion: In
the previous mobile mapping on small objects for short time,

the detailed features are quantitatively compared used to verify
the effectiveness of our proposed mapping method. In this
experiment, a long time free-motion mapping experiment is
conducted in a large random scene as shown in Fig. 12(a).
Fig. 12(b) shows the dark scene created during the experiment
and the results of trajectory tracking by the global camera.
The specific trajectory results are presented in Fig. 12(c)
and (d), where the system trajectories obtained by DR and
our method are compared. The trajectory error results for
different directions are shown in Fig. 12(e)–(g). From the
results, by introducing additional IMU, our method has more
accurate estimation when local orientation changes, such as the
enlarged area in Fig. 12(c). Failure in orientation will undoubt-
edly create fatal problems for the construction of the map
compared to the translation accumulation error. Therefore, our
method will get better performance in building maps even
though the errors of both methods in XY direction are close.
The trajectory RMSE of DR is 0.029 m in X-direction and
0.043 m in Y-direction, while that of our method is 0.037
and 0.034 m, respectively. However, our method achieves
higher frequency state estimation, which ensures the effective
utilization of the point cloud. From Fig. 12(h), it can be seen
that the map by LF DR used in [19] and [20] is sparse and
loses a lot of point cloud information. In addition, by fusing the
pressure sensors, our method has basically no cumulative error
in the Z-direction, as shown in Fig. 12(g). In the Z-direction,
the trajectory RMSE of our method is only 0.016 m, while that
of the DR method reaches 0.089 m, which makes the maps
constructed based on the DR method produce great distortion.
Fig. 12(i) and (j) shows the mapping results of our method
with and without pressure sensor, respectively. Although both
are dense, the former has a significant cumulative error in
the Z-direction, as shown in the partial zoomed-in region
of the figure. The latter has much better map consistency with
the pressure sensor observations, which is expected to be used
to a variety of underwater engineering applications.

E. Underwater Simultaneous Navigation and Dense Mapping

The refined exploration of unknown underwater environ-
ment is significant for marine development and is one of the
key operations of autonomous underwater robots. Generally
speaking, the robot is required to have autonomous cruis-
ing, collision-free navigation and dense mapping capabilities
underwater. Existing methods are difficult to be put into
practical applications in dark conditions, while our ROV-
Scanner can realize this task well. In order to verify it, two
groups of experiments are conducted. In the first group of
experiments, the cruising ability of the system to the target
areas and the mapping performance of the object in the process
are tested. Then, the collision-free navigation ability and the
obstacles mapping performance of the proposed system were
tested in the second group of experiments

1) Target Areas Cruising and Dense Mapping: In general,
in order to maximize the efficiency in the exploration of
underwater unknown areas, some key search areas are often
artificially prioritized, and robots are used to carry out opera-
tions at the destinations by autonomous movement. Therefore,
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Fig. 12. Mobile mapping results of underwater random scene in free motion. (a) Experiment scene. (b) Trajectory measured by the global camera. (c) XY-plane
trajectory comparison results. (d) Z-direction trajectory comparison results. (e)–(g) Error results in different directions, respectively. (h) Mobile mapping by
the single LF DR method used in [19] and [20]. (i) Mobile mapping by our method without pressure sensor. (j) Mobile mapping by our method with pressure
sensor.

Fig. 13. Target areas cruising and dense mapping. (a) Experiment scene and target areas. (b) Trajectory measured by the global camera. (c) XY-plane trajectory
comparison between DR used in [19] and [20] and our method. (d) Dense map built during the cruise. (e)–(g) Different direction trajectory comparison.

area cruising capability is essential. Based on acoustic–
inertial–pressure information fusion, our ROV-Scanner realizes
this goal. A set of experiment is conducted in dark underwater
scene to verify it. As shown in Fig. 13(a), we set three
circular cruising target areas for ROV-Scanner, each with a
radius of 0.15 m and centers of (1, 1), (1.5, −0.25), (0,
−0.5). The system starts from the starting position and moves
autonomously toward the target areas sequentially, performing
the mapping task in the process. The global camera records
the motion trajectory of the system from the beginning to the
end of the task, as shown in Fig. 13(b). It can be seen that the
ROV-Scanner successfully reached the designated areas. It is
worth stating that the cruise mission only needs to reach the
target area and ultrahigh control accuracy is not considered in
this article. Fig. 13(d) shows the result of mapping, which is

very dense and meets the requirements of refined exploration.
Fig. 13(c),(e),(f), and (g) present the system’s trajectories in
different directions. We can clearly find that ROV-Scanner
reaches target 1 at 77.1 s, reaches target 2 at 144.4 s, and then
reaches target 3 at 189.2 s, successfully completing the cruise
task. Moreover, our method is significantly more stable in the
Z direction than the DR method used in [19] and [20]. The
trajectory RMSE of DR’s reaches 0.119 m, while ours is only
0.046 m.

2) Collision-Free Navigation and Dense Mapping: For
unknown territory, obstacle avoidance capability is critical for
safe robot navigation. Existing passive vision-based obstacle
avoidance methods are hardly effective in dark and weak
texture underwater scenes. In order to verify the collision-free
navigation capability of ROV-Scanner based on active vision
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Fig. 14. Collision-free navigation and dense mapping. (a) Experiment scene with obstacles. (b) Trajectory measured by the global camera. (c) and (d) Different
direction trajectory comparison between DR used in [19] and [20] and our method. (e) Dense map built during the collision-free navigation.

and the effect of obstacle mapping, a set of obstacle avoidance
experiment in dark underwater scene is carried out, as shown
in Fig. 14(a). A target area is set first, and the ROV-Scanner
moves autonomously at starting point in conjunction with
the previously described cruise capability. It is worth stating
that the obstacle information in the scene is unknown, and
the system uses our proposed underwater real-time obstacle
avoidance algorithm based on BSL to realize collision-free
navigation during the movement. From the view of global
camera in Fig. 14(b), the ROV-Scanner successfully avoids
the obstacles and safely moves to the target area. Detailed
trajectory results are shown in Fig. 14(c) and (d), where
it can be seen that the ROV-Scanner detects the obstacles
and successfully avoids them at 15.1, 90.0, and 115.1 s,
respectively, and finally successfully reaches the target area at
146.4 s. The conclusions of the evaluation of the trajectory
RMSE are consistent with the previous experiments. In this
experiment, the RMSE of our method in the X, Y, Z directions
are 0.035, 0.039, and 0.005 m, respectively, while the DR-
based RMSE reaches 0.036, 0.063, and 0.056 m. Fig. 14(e)
shows the reconstructed maps of the obstacles information.
Similarly, the point cloud map is very dense, and the obstacle
information is very rich to observation. We believe this work
provides new inspiration for underwater exploration and other
related operations.

F. Discussion

The above experimental results demonstrate that our ROV-
Scanner can well fulfill the task of refined exploration
in unknown dark environments, with autonomous cruising,
collision-free navigation, and dense mapping capabilities. This
is mainly attributed to the accurate calibration method, the
efficient multifrequency fusion mapping algorithm, the novel
collision-free navigation framework and the self-designed
hardware system. Among them, the proposed multifrequency
information fusion mapping method ensures the effective
utilization of HF structured light information, which makes

TABLE VII
RMSE RESULTS OF TRAJECTORY FOR DIFFERENT EXPERIMENTS

TABLE VIII
MAE RESULTS OF TRAJECTORY FOR DIFFERENT EXPERIMENTS

the constructed maps denser. Moreover, the fusion of multiple
sensors, including inertial information from IMU, acoustic
information from DVL, and pressure information from pres-
sure sensors, makes the robot’s state estimation more accurate.
The RMSE and mean absolute error (MAE) statistics of the
trajectories in the above experiments (Sections VI-D3, VI-E1,
and VI-E2) are shown in Tables VII and VIII. It can be seen
that our method has higher accuracy and greatly reduces the
trajectory error especially in the Z-direction.

At present, underwater exploration has long been a fas-
cinating research hotspot with many interesting studies. We
statistically analyze some of the SOTA underwater explo-
ration systems, as shown in Table IX. By using a variety
of sensors as well as various algorithms, these systems
achieve underwater exploration operations under specific con-
ditions. However, underwater dark conditions and refraction
effects affect their robustness. By utilizing active structured
light vision, our ROV-Scanner can simultaneously realize
autonomous collision-free navigation and dense mapping in
dark underwater environments for the first time.

Furthermore, it has always been a challenge to apply under-
water exploration systems in real oceans due to the complexity
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TABLE IX
COMPARISON OF SOTA SYSTEMS FOR UNDERWATER EXPLORATION

and variability of the underwater environment. But our ROV-
Scanner has great application advantages. First, the robots
could float up and down affected by irregular underwater
currents. Undoubtedly, it would cause more suffering for
refined exploration. Compared with the LF DR mapping, our
multifrequency information fusion method is more effective
when facing this HF changes. In addition, the introduction of
pressure sensors allows our system to effectively compensate
for depth variations, thus improving the accuracy of the maps.
Moreover, our BSL is based on the underwater refraction
measurement model, which can effectively compensate the
influence of underwater refraction effect on the measurement
accuracy. As can be seen from Section IV-A, the only variable
in our model that is affected by the environment is the
refractive index of water. For different areas, the refractive
index of water will change due to different turbidity and
salinity. Therefore, only field measurements with a specialized
refractometer are needed for the actual operation, and no
other additional compensations such as artificial lighting.
Furthermore, for some turbid areas, light scattering by particles
in the water is so severe that the common passive vision-based
mapping method is no longer suitable. ROV-Scanner, thanks
to the high penetration of the laser, can still work effectively
in these turbid areas. Overall, our system has great potential
for marine engineering.

VII. CONCLUSION

In this article, a structured light-based underwater robotic
collision-free navigation and dense mapping system, named
ROV-Scanner, is designed for refined exploration in unknown
dark environments, where the on-board design allows for
autonomous mobility and operational capabilities. Then, an
underwater 3-D dense mapping algorithm fusing DVL, IMU,
and pressure sensor multifrequency information is proposed to
realize dense mapping during robot motion. Moreover, an air–
water two-stage underwater multisensor calibration method
is presented. In particular, the extrinsic parameters between
DVL and camera is innovatively calibrated using BSL by
graph-based optimization, enhancing robustness. In addition, a
framework of BSL-based collision-free navigation is presented
to guarantee the safe movement of the robot in unknown
dark environments. Finally, experimental results show that our
system can simultaneously realize autonomous collision-free
navigation and dense mapping in dark underwater environ-
ments, which has great potential for underwater application.
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